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Hard-Hexagon Model: Calculation of Anisotropic 
Interfacial Tension from Asymptotic Degeneracy of 
Largest Eigenvalues of Row-Row Transfer Matrix 
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To find the directional dependence of the interracial tension of the hard-hexagon 
model, an inhomogeneous system is studied. This system is defined on a square 
lattice with (1 +v)M columns so that the lhs of the (M+ 1)th column is the 
hard-hexagon model and the rhs of the (M + 1 )th column works as the operator 
which shifts the particle configuration of a column downward. A triplet of the 
largest eigenvalues of the row-row transfer matrix are asymptotically degenerate 
as M ~  oo under the conditions that (1--v)M==-O (mod 3), with v being fixed 
to be constant. The interracial tension of a tilted interface is calculated from the 
finite correction terms in this limit. 

KEY WORDS:  Hard-hexagon model; hard-square model; row-row transfer 
matrix; asymptotic degeneracy; interfacial tension. 

Baxter  and  Pearce  (BP)  exact ly ca lcula ted  the interracial  tension of the 
ha rd -hexagon  mode l  for a special  d i rec t ion  by two methods .  (11 They con- 

s idered a square  lat t ice of M columns and  N rows with to ro ida l  b o u n d a r y  
condi t ions .  ( A ) W h e n  M = 0  (rood 3), they showed tha t  a t r iplet  of  the 
largest  eigenvalues of the r o w - r o w  transfer  ma t r ix  ( R R T M )  are  a sympto t i -  
cally degenera te  as M ~ ~ ,  and  ca lcula ted  the interfacial  tension from the 
finite cor rec t ion  terms. (B) W h e n  M -  1 or  2 (mod  3), ext ra  factors appea r  
in the largest  eigenvalues of the R R T M ;  BP po in ted  out  that  this fact 
reflects the existence of a mi sma tched  vert ical  seam, and  that  the extra  fac- 
tors  give the interracial  tension. In  recent  years, the crystal  shape or  inter-  
face physics  has been a t t rac ted  much  a t tent ion.  The ca lcula t ion  of  the 
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directional dependence of the interracial tension is very important there. In 
a previous paper, we introduced the shift operator into the analysis (B) to 
obtain the anisotropic interracial tension of the hard-hexagon model. (2~ 
Furthermore, the equilibrium crystal shape was derived by the use of 
Wulff's construction. For  the eight-vertex model, the calculation of the 
interracial tension for a special direction was done by a method similar to 
(A). (3'4) It is significant to consider how the method (A) can be extended 
to the analysis of the anisotropic interracial tension, since this extension is 
expected to be easily applicable to the eight-vertex model. 

In this paper, we explain an alternative way of calculating the 
anisotropic interracial tension of the hard-hexagon model, which is an 
extension of the method (A). In the first place, an inhomogeneous system 
is introduced. Next, the eigenvalues of the RRTM of this system are 
calculated by the commuting transfer matrix method, and it is shown that 
a triplet of the largest eigenvalues are asymptotically degenerate as the 
width of the system becomes large. The anisotropic interracial tension of 
the hard-hexagon model is calculated from the finite correction terms in 
this limit. 

The hard-hexagon model can be regarded as a special case of the 
hard-square model with diagonal interactions. (~'3) In the hard-square 
model an occupation number ai is located at each site i on the square lat- 
tice; o-i = 0 if the site i is empty, and ai = 1 if the site i is occupied by a par- 
ticle. Owing to the hard-core condition, a constraint a~a/= 0 is imposed on 
every nearest neighbor pair i, j. If the occupation numbers around a face 
are a, b, c, and d counterclockwise starting from the southwest corner, we 
assign a Boltzmann weight W(a, b, c, d) on it. Baxter showed that this 
model is solvable when W's satisfy the star-triangle relation, which is a suf- 
ficient condition for commutability between RRTMs. (3"5) In this paper 
analysis is restricted to the triangular ordered phase corresponding to the 
regime II in BP. The parametrization of W's given by Eqs. (2.12), (3.10), 
and (3.14) in BP are used. We regard x as a real variable with 0 < x < 1 
and w as a complex one. The point w = x  -1 corresponds to the hard- 
hexagon model, and then x is related to the one-particle activity. The 
square lattice is interpreted as a deformed one of the triangular lattice 
where the hard-hexagon model is originally defined. 

In BP the parameters x, w are common to all the faces. This condition 
is relaxed: w can vary from column to column/3) The value of w between 
the ith column and the ( i+  1)th column is denoted by w~. Consider a lat- 
tice of (1 + v)M (0 < v < oo) columns and N rows with toroidal boundary 
conditions, and set W I = W  2 . . . .  = W M = X  - 1 ,  W M + I = W M + 2  " '"  = 

W(~+~)M= X. The region w = x works as the operator which shifts the con- 
figuration of a column downward. When M and N become large under the 
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conditions that (1 - v ) M - 0  (mod 3) with v being fixed to be constant and 
N - 1  or 2 (mod 3), there is a mismatched horizontal seam in the hard- 
hexagon region where w = x  1 (Fig. 1). This seam is tilted due to the 
region w = x. The tilt angle is determined by v. 

Restricting ourselves to near the interface (or the seam), we divide the 
lattice into three sublattices A, B, and C so that, on both sides of the inter- 
face, either the A lattice or the B lattice is preferentially occupied by par- 
ticles. We call the phase where the A lattice (the B lattice) is preferentially 
occupied the A phase (the B phase). It is found that the positions of the A 
phase and the B phase are interchanged according as N---1 (mod 3) or 
N-=2 (mod 3). In ref. 2, it was shown that the interracial tension of 
these two types of interface are different. Taking account of this fact, we 
introduce a parameter 0z by 

1 x ~ 1 
- v - - - ~ -  tan 0• +~ ,  

(1) 

{ - ~ / 2 < 0 •  for N - l ( m o d 3 )  

g/2 < 0• < 5rc/6 for N -  2 (mod 3) 
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Fig. 1. Typical configurations of the inhomogeneous systems in the x ~ +0 limit. (a)N---2 
(rood 3). (b) N~ 1 (mod 3). The lhs of the tenth column is the hard-hexagon model, and the 
rhs of the tenth column works as the downward shift operator. 
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When the lattice is deformed into the triangular lattice, 0• is the angle 
between the normal vector of the interface drawn from the A phase toward 
the B phase and the horizontal axis connecting the nearest neighbor sites. 
The interracial tension is calculated as a function of 0a. Considering the 
case W I ~ W 2 ~  ' ' '  ~ W M ~ X  -1, W M + I ~ W M + 2  ~ "'" ~ W ( l + v ) M ~ ] ~  we 
find the interfacial tension for - ~ / 6  < 0• < re/2, 57r/6 < 0L < 3rc/2. Since the 
calculational methods are almost the same, only the calculation for w l = 
w2 . . . . .  WM = X -  1, WM + ~ = WM + 2 . . . . .  W~I + ~)M = X is explained, and 
that for w ~ = w 2  . . . . .  W M = X  -~, WM+~=WM+2 . . . . .  W(~+~)M=I is 
omitted in the following. 

We consider a generalized problem where the value of w~ are given 
by a parameter Wo:W~=W2 . . . . .  WM=Wo,  W M + I ~ W M + 2  . . . . .  

W(~+~)M = X2Wo �9 Hereafter, the new parameter wo is abbreviated to w. A 
one-parameter family of RRTMs is introduced. If a = {o- 1, o-2 . . . . .  o-(1 +v)M} 
and o-'= {o-'~, o-;,..., o-}~ +~)M} are the configurations of two successive rows, 
the RRTM is defined by 

[V./(w)] ~,~, 

M (l+v)M 
= I~ W(ffi ,  o-i+ 1, o-;+ 1, o-;I W) ~I  W(o-j, oj+ i, o-j+ 1, o-jI x2W) 

i=1 j = M + I  

where a(1 + ~)M + ~ = a~, O-11 + ~M+ 1 = a].  For  convenience, we also define 
the dimensionless RRTM by 

(2) 

(D 1 (W) .~ M (D 1 (X2W) ~ ?v/v 

Unless otherwise mentioned, we regard x and v as constants. The transfer 
matrix argument in BP is repeated for Till(W). The family of TIH(W) 
l-Vm(w)] commute with each other, being simultaneously diagonalized. 
The eigenvalues of Tin(w) [Vm(w)]  are represented by Tin(w)  [ V m ( w ) ] .  
It follows from the same derivation of (3.5) and (3.6) in BP that each 
eigenvalue Tin(w)  satisfies the equations 

T,H(W ) TIH(XW ) = 1 + TIH(X3W) (3) 

T m ( x S w )  = Tin(w)  (4) 

Assuming some analytic properties of the eigenvalues Tin(w) ,  and using (3) 
and (4), we can determine their asymptotic forms as M ~ ~ .  Hereafter, we 
confine ourselves to the eigenvalues which are the largest in the regime 
1 < Iwl ~ x-I'  

First, the leading term of Tin(w)  as M ~ ~ is considered. We always 
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keep only the dominant term in the rhs of (3). In the x ~ +0 limit, there 
is complete triangular order in the regimes ! ~< Iwl ~<x -~, xS/2~ < Iwl ~<x 3/2. 
This fact suggests that, in the M ~ oo and the x ~ 0 limit, the eigenvalues 
we consider behave as 

( 1 ~  My/3, 
Vz~(W) ~ w M/3 \~ww/ 1 ~ Iwl ~< x - I  (5a) 

It is also found that these eigenvalues are the largest in the regime xS/2<~ 
Iw] <<.x 3/2, and that, in the M ~  oo and the x ~  oo limit, they behave as 

1 ~ / 3  
V , H ( W ) ~ w ) M / 3 ~ - -  - ~ j  , xS/Z~'wI<~X 3/2 (5b) 

In (5a) and (5b), the factors w ~/3, ( - 1/w2) M~/3 correspond to the complete 
triangular order where the faces o)3, co4 are dominant, and the factors 
(l/xw) My/3, (X/W) M/3 are related to the complete triangular order 
dominated by the faces co2, cos. We expect from (3), (5a), and (5b) that 
there exists a positive real number 6 such that, for 0 < x < 6  and as 
M - - ~  oo, 

I Tm(w)l = O ( x  - ~ )  >> 1, 

I TIH(W)[ = O(x TM) ~ 1, 

with ~ > 0. 

xS /2~  Iwl ~ x  3/2, 

x7/2~ Iwl ~ x  3, 

l ~ l W l ~  x 1 

x ~  Iwl ~ x 1/2 
(6) 

It is assumed that, except for exponential divergence as M - *  ~ ,  
Vm(w) has no infinity for 0 <  Jwl < oo. We also assume that the leading 
term of Vm(w) as M ~  oo is analytic in the annuli a <  [w] < b  containing 
the points w =  1, x -1 and a '< Iwl < b' containing the points w = x  5/2, x 3/2. 
In the limit M--,  o% and for 0 < x < 6 ,  it follows from (3) and (6) that the 
zeros of VIH(W) exist in the six annuli x -1 /2<  Iwl < x  -a, x5/2< Iwl < x  2, 
l < ] w l < x  1/2, x2 < lwl < x3/2, x 3/2 < Iwl < x 2, x • iwl < xl/2, and that 
the zeros w = a x  1, ax 2 ( x l / 2< la l< l ) ,  and w = b x  -1/2, bx 3/2 (xl/2< 
fb[ < 1) appear in pairs. It is found that, for 0 < x < 6 and M large, Tin(w) 
can be written in the form 

Tin(w) = L(w) w m FI"P= 1 (1 - xw/ai) I-I} =i (1 - xl/2w/b:) 
( l _ x w ) M  ( l _ w  1)My 

I ~ I W [ ~  X 3/2 

TII4(W) = L(w) w m 1-IF= 1( 1 - xZai/w) H}= 1( 1 - -  x3/2bj/W) (7) 
(1 - x2/w)  ~1 + v~M 

x 5/2<< . twl <~x 
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where L(w) is analytic and nonzero for 1 < Iwl < x 3/2 and/5(w) is analytic 
and nonzero for x 5/2 < [w[ < x. 

For the moment, we regard the ai and bj as known. Consider Eq. (3) 
in the annuli x3/2<[wl<x, x - l < [ w [ < x  -3/2, where the second terms 
in the rhs of (3) are dominant. Taking logarithms of both sides of (3), using 
(7), Laurent expanding, and equating coefficients, we can determine the 
explicit forms of L(w) and L(w). It follows that p and r must satisfy the 
condition thatp  + 2r - (1 - v)M (mod 3). We find that for (p, r) = 0 = (0, 0), 

:r,,,;o,~(w) = rO(w) M O( 1 / x w U  ~, 

= (1/~) O(x/w) M O(w)'% 

1 ~< twt ~< x -3''= 
(8a) 

xS/2 <~ lw[ ~<x 

with r3 = 1, and that for (p, r) ~ 0, 

T,H;p.r(W)=O(W) M t~(1/XW) M" (-I ~(ai/w) (-I (O(bjw), 
i = l  j = l  

1 ~< Iwl ~ X-3/2 

=tp(x/w) M O(w) M~ f l  tp(w/xai) (~ (J(w/xbj), 
i = 1  / = 1  

xS/2 ~ lwl ~<x 

(sb) 

where the ai and bj are defined on the three sheets of the Riemann surface. 
The definitions of O(w) and ~(w) are given by (5.8) in BP. The facts that 
I~'(w)l > 1 for 1 < Iwl <X--3/2, I~'(w)l < 1 for X3/2<~ Iwl < l, and ~,(x3w)= 
0(w) show that the conditions (6) are satisfied for 0 < x < 1. Therefore, the 
argument from (6)-(8) makes sense for 0 < x < l .  The leading term of 
Tin(w) for x <  [wl < 1, x7/2< Iwl < x  5/2 can be determined by the use of 
(8a), (8b), and (3). 

The ai and bj are solutions of the equations 

p r 

~P(ai) M O(1/aix) M~= - 1-I O(a~/ak) lq ~(a,/b,), i= 1, 2,..., p 
k = l  l = 1  (9) 

P 

~(bJ) ~ (~(1/bjx) M~ - [ I  r 1:I 0(b, /b,) ,  j =  ~, 2,..., r 
k = l  l = l  

Equations (9) show that as M--* o% the ai and bj approach the contours 
[0(a) O(1/ax)V[ -- 1 and [~(b) ~(1/bx)~[ = 1, respectively. This fact is consis- 
tent with the requirements that x 1/2 < lag[ < 1, x 1/2 < [bj[ < 1. We find that, 
when ( 1 - v ) M - 0  (rood3), the triplet of eigenvalues Tm;o.~(w ) are the 
largest in the regimes 1 ~< Iwl <<. x -1, x5/2<~ Iwl ~< x 37=. 
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Next, for the triplet of the largest eigenvalues Tm;0,~(w), an integral 
equation determining the finite correction terms as M--, oo is derived. In 
this calculation, we keep both terms in the rhs of (3). We define K~(w), 
K,(w) by 

T,,,;o.,(w) = ~ , ( w ? '  ~,(1/xw) M~ IL(w), 

= (1/~) O(x/w) M O(w) M~ f.~(w), 

1 <~ Iwl ~ x-3 /2  
( lo)  

x5/2<~ Iwl ~<x 

It follows from (3) that 

Kr Kr 1-~ 1 x l x-3/2 
~ . c ( X 3 W )  - -  TIH;O,r(X3W) ' < IW[ < 

(11) 
~;~(w) _g~(xw) 1 

-- 1 -~ X3/2< IWI < X 
K~(x-2w) Tm;o.~(x 2w)' 

For sufficiently large M, the second terms in the rhs of (11) are exponen- 
tially smaller than 1. Taking logarithms of both sides of (11), Laurent 
expanding, and equating coefficients, we get the integral equation 

In K~(w)= - -  2~i TIH;o,~X3W ) ~ 7  

+ ~  : -~ - ln  l+Tm;o.~(x w)  \ w ' J  (12) 

where C1 is a circle in x 1 < ]w'r •X -3/2, C 2 is a circle in X3/2< [W t] <X, 
and J(w) is the function defined by (5.15) in BP. For 1~< ]w[ <~x -3/2, 
Eqs. (10) and (12) determine the asymptotic form of Tm;o,~(w ) as M ~  oo. 

For large M, using (8a), we estimate the logarithms in the integrands 
of (12) by 

ln[1 + 1/T,~i;o.~(x3w')] ~ v[O(w'/x)  0(1 /w ' f ]  M 
(13) 

ln[1 + 1/Tm;o,~(x 2w')] ~ (1/~)[O(x2/w ') ~(w'/x)~] M 

and integrate (12) by steepest descent. It follows that 

K~(w) = 1 + c~(w) vO(ws/x) M O(1/w,) M~ 

+ a(w)(1/r) ~p(x2/#,) M O(#s/X) M~ + .. .  (14) 

where w, and #s are the saddle points of IO(w'/x)@(1/w' f l  and 
FO(x2/w ') O(w' /x f] ,  respectively. When Ws and ws are regarded as functions 
of v, they satisfy the conditions that ws = - x - l ,  #, = _x3/2 for v = 1. The 
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functions c~(w), ~(w) are represented by J(w) and the derivatives of O(w), 
and their explicit forms are not important here. For (1 - v ) M - 0  (rood 3) 
and 1 ~< lwl ~<x -1, Eqs. (10) and (14) show that the triplet of the largest 
eigenvalues Tm;o,~(w ) are asymptotically degenerate as M ~ ~ .  

Now, setting w = x  -1 in (10) and (14), we calculate the anisotropic 
interracial tension of the hard-hexagon model. When (1 - v ) M  = - 0 (mod 3) 
and M, N become large, the partition function can be represented by the 
use of (10) and (14) as 

Z ~  I+zN + 1 +~(X 1)N l + z  o +_~77 
~o / 

• r -2 \Ws/ 

( 

where % = ( -  1 + f i  i)/2 and 

w = x  l (16) 

The second and the third terms in the bracket of (15), which come from the 
finite correction terms in (14), give the excess free energy for N - 2  and 1 
(rood 3), respectively. From (14) and (15), after some. calculations, we find 
that 

- f l a  = ~ 3  Icos 0• In ' O ( a , x ) l + c o s ( O a - 3 ) l n  10(as)l; 

~ ~ 5~ 
for - ~ < 0 •  - g ,  ~ < 0 •  (17) 

where fi is the inverse temperature and a is the interracial tension defined 
on the triangular lattice. The saddle point a s is determined by 

, , ~ -  tan 0• f ( -ax,  x3)f(a-lxl/2, x3)f(-a-~x 1/2, x 3) 
- a a = a s  ,,f3 + tan 0• f ( - a  Ix, x 3 ) f ( a x  l/2, x 3 ) f ( - a x  1/2, x 3) ' 

(18a) 
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and the conditions 

7[ 
a s =  - - x  1/2, O• : - - ~  

a,  = - x ,  
2~ 

01 =7- 

(18b) 

Combining the result of the case W l = W  2 . . . . .  W M = X  - l ,  W M + I  = 

WM+ 2 . . . . .  W(l+v)/=l  with (17), (18a), and (18b), we obtain an 
expression of the interfacial tension for all directions which is the same 
result as that given in Section 3.2 of ref. 2. 

To summarize, we have shown that the anisotropic interfacial tension 
of the hard-hexagon model can be calculated from the finite correction 
terms of the triplet of the largest eigenvalues of the RRTM of the 
inhomogeneous system, which are asymptotically degenerate as M ~ oe. As 
is mentioned in the beginning of this paper, this calculation is applicable to 
a wide class of solvable models, including the eight-vertex model. Recently, 
Holzer (6) and Akutsu and Akutsu (7) have shown that, for the planar Ising 
model without bond crossings, the equilibrium crystal shape is given by a 
set of imaginary zeros of the partition function, and that this property 
originates from the free random-walk character of the interface. Akutsu and 
Akutsu also examined the expression of the facet shape of the BCSOS 
model (or the six-vertex model), (8) and suggested the free random-walk 
character of the step of this model. In connection with these problems, it 
is desirable to carry out the analysis of the anisotropic interracial tension 
of the eight-vertex model, which contains the square lattice Ising model 
and the six-vertex model as special limits. (3) I hope to explore this problem 
in a future publication. 
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